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Abstract Syntax
Edward L. Keenan and Edward P. Stabler

A naive view of language as a set of conventions or “games” might lead one
to think that the semantic values of expressions are entirely arbitrary, the result
of historical accident, unboundedly adjustable by innovation and fashion.
A similar conclusion is sometimes reached on less naive views, ones which
emphasize !’arbitraire du signe or the autonomy of syntax. Troubling for such
views is the lack of semantic variability of grammatical constants (function
words, closed class items) such as infinitival fo and gerundive -ing in English, or
boolean operators such as and, or and not, or case markers such as nominative
-i/-ka and accusative -i#l/-lil in Korean.

This lack of semantic variability could be a biological accident, an arbitrary,
universal requirement that certain categories in human languages contain gram-
matical constants with specially restricted syntactic and semantic properties.

Here we present a different view, taking some first steps toward a
demonstration that these facts follow from a certain natural fit between syntactic
and semantic properties of language. We present a theory-independent charac-
terization of the notion grammatical structure which covers that of grammatical
constant as a special case. Then we show how the syntactic and semantic fixity
of grammatical constants follows from general axioms constraining the relation
between form and meaning in natural language.

1. Defining the relation

We think of a generalized grammar G as consisting basically of a Lexicon
(Lex), whose elements are categorized strings, and a set F of structure-building
(generating) functions which derive complex expressions from simpler ones
beginning with Lex. L(G), the language generated by G, is the set of expressions
(categorized strings) that can be derived from Lex by finitely many applications
of the structure-building functions.! It is easy to show that any set of expressions
defined in any format is generated by some generalized grammar. In this sense,
the account of structure offered here is theory-independent; it does not depend
on any particular assumptions about what the generating functions are, how they
are specified, or what sort of language is defined.

Given G and expressions g, T in L(G), we say that ¢ has the same structure
as 1 if and only if (iff) each can be derived from the other by an “appropriate”
substitution of lexical items. For example, given an English expression ¢ with
derivation D(c) we should be able to everywhere replace the NP (or DP) John in
D(o) with Bill and Bill with John yielding an expression D(7) with the same
structure as ¢. By contrast we could not everywhere intersubstitute the adjec-
tives eager and easy since To please John is easy is grammatical English and To
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please John is eager is not. So a rough guide as to whether a substitution is
appropriate is whether the substitution everywhere preserves grammaticality.

In more detail, we represent the appropriate substitutions as functions h
from L(G) to L{G) which satisfy the two conditions given below. We shall call
such h’s structure maps for L(G). The idea is that when o is an expression,
h(o) is the expression which h substitutes for 6. And we choose the conditions h
must satisfy so as to guarantee that for any ¢, ¢ and h(c) have the same
structure,

A crucial intuition, well-supported from the earliest work in generative
grammar, is that whether two expressions have the same structure cannot be
decided just by checking their internal structure (as represented by, say, their
syntactic derivations). E.g. expressions like John wanted to leave and John
promised to leave are structurally different, though internally they appear
similar. Comparable claims hold for John is easy to please and John is eager to
please, and John praised Bill and John praised himself. Whether two
expressions have the same structure depends in part on how they and their
component expressions are structurally related to others.

Part of this intuition is captured by requiring that the collection of
substitution values under h must be the entire language, not just a proper subset
of it. That is, we want the set of h(c)’s to have exactly the structure of [.(G), and
this might fail to happen if certain expressions, say reflexive pronouns or verbs
like promise, were not present among the h(c)’s. In such a case the set of h(c)’s
would lack certain structurally significant elements of L(G) as pretheoretically

Judged. Formally then we require that a structure map h for L(G) be onto
(surjective). We shall also require that h map distinct expressions to distinct
expressions, since identity of expressions is typically an important part of the
structure of an expression, E.g. we do not want a structure map h to be able to
map a natural sentence like John neither laughed nor cried to John neither
laughed nor laughed since the latter is probably not even grammatical and in

any event does not clearly, as pretheoretically judged, have the same structure as
the former. So our first condition on structure maps is:

(1) Structure maps are bijective (one to one and onto).

Our second condition is the most fundamental one. It will guarantee for
example that whenever a structure-building function F applies to some sequence
8 of expressions to yield some o then it will also apply to h(8) to yield h(c). (If
is a sequence, say (c,B,y), then by h(8) is meant the sequence {h(c), h(B), h(y)).)
The idea is that a generating function F treats any 8 and h(5) the same; the only
differences in what F derives from 8 and from h(8) are due to h. Thus we want to
say that for all 8 and o, F(8)=a iff F(h(8))=h(c). A succinct way to say this is
just to say that structure maps h fix the generating functions. That is,

(2) For all structure maps h and all generating functions f, h(f)=f 2

We may now define an expression G to have the same structure as an
expression T iff there is a structure map h such that h(c)=t. In such a case we

write 0= and say that o is ( grammatically) .isomgrphic.to ’t; Or;le se;:i (t’hz;tn:; 1lsf
an equivalence relation: each o is isomorphic to itself; if o=T then 1=0,

= =y then G=V. .
o Zn;ji:;ﬁsttli]c property P is structural iff whergcver_P_holds of atr]l expr:ass::?l:lr:1
then P holds of all expressions isomorphic to G. This just _sayg ;) 'cg{e;] ?or;c el
property P is one that is fixed by all structure maps, that 1s,l )= hio)le ha
P}=P, for all structure maps h. It foliows that if a structural property

- some & then it fails of everything isomorphic to G. Thus a structural property 18

one that can’t tell the difference between isomorphil:: expres;ionsP Ga’\‘:;deltt}l::rol:gg;
i i happen that one has
have P or neither do, but it could not _ ‘ e i e
’ inguistic relation R is structural iff whenev
doesn’t. And more generally a linguis : e
i i then h(o) stands in the relation to ,
some © stands in the relation to some T | : ‘ _
for all structure maps h. (The generalization to n-ary relat}ons .here is obv1outs). 1
A set of expressions (or sequences of expre'ssm.ns) is sald.to be struc1 uFrgr
(or structurally definable) iff the propert)é ;)f being 1tn thlz]i}t’ S;:f;i :tt)rlléct}ll‘;ais. -
i L(G) is structura .
example, given a grammar G, the s<.:t { tural \
says glat »%hether a possible expresston 18 grammaucgl isa stn_xcturql propertrilci
Similarly, standard structural relations like isa constttugrlzt 0];, 91_\9 Sa) stfger 1(;{; aan
’ | (Keenan and Stabler . Finally, a
c-commands are provably structural . :
expression © is structural (a grammatical constant) iff the property of being o 18
structural, that is, h(0)=0, all structure maps h. Provably,

(3) An expression g isa grammatical constant iff is isomorphic only to itself.

Thus grammatical constants are those expressions which catnggtrl:; lzl;iréggg
i i ivational terms, they canno
without changing structure. In derlv.a s, th { be feplaced by
i ivati ving grammaticality. Note thal
any other in all derivations, preser _ he criterion
i i rammatical constant, 1s the
for an expression to be a structural one, a g ca '
for a progerty or relation to be structural. Namely it 1s mapped to itself by all
cture maps. . _
e Note thIz)\t while relations like is a constituent of are structural in taréz
grammar, a property like being an expression of cizjtetgory X {nay] grl zr‘rrllag)l'l :;)e e
, i tion we define a simp
structural. For example, in the next sec ‘ imple fangusse |
i i is structural. But in the spirit of A-par y
which the property of being an NP is s i a1 theon
ibili for example, NPs could be isomorp s,
we leave open the possibility that, rphic (o 5%
1 ed NPs to Ss and Ss to NPs.
so we could find a structure map that mapp
case, being an NP would not be a structural property. It does not sier(r)lftl;erglitvhear:
; ty of being an expressio
we want to guarantee that the proper f 2 given
“major” is always a structural property 1n
tegory, even a “major” category, is always a Sl _ ‘
fz?ngguages. But the following weaker condition is a plausible constraint on

human languages:
(4) A Language Universal?
VG, V0,7eL(Q), if Cat(c)=Cat(t) then if h is any structure map,

Cat(h(c))=Cat(h(t)). O



That is, any given structure map will map expressions of the same category to
expressions of the same category. The requirement here is that the category
system must reflect the real structure of the language, and so the claim may
appear to be methodological. But it is also an empirical claim: the best theory of
language will be one in which the category system reflects structure at least to
this extent.

In a similar way the property of being a particular morpheme will typically
not be a structural property, although it can happen. In Case Marked English
below the property of being the expression {(John,NP) is not structural while the
properly of being the case marker (nom,K) is structural. This depends entirely on
the particular grammar. It is possible to design artificial grammars with no
constants, or grammars according to which every expression is a constant.

Before turning to axiomatic constraints between form and meaning we
illustrate the ideas presented above with a simple little grammar of “Case
Marked English” (CME).

2. Case Marked English: an illustrative example

In this section we present a grammar of a familiar sort to illustrate the
notions presented more abstractly above. Our purpose is to show that expres-
sions in such familiar “languages” can be represented naturally in our function-
argument formalism and “read” in a natural way. Before giving the grammar we
illustrate one typical (short) expression and say informally how it is built.
We design CME so that the NPs carry overt case markers, the category of the
resulting expressions being “Kase Phrases” of two sorts: KPn’s or “nominative
Kase Phrases” and KPa’s or “accusative Kase Phrases.” The pronoun ke is a
lexical KPn, him and himself are lexical KPa’s. We allow boolean combinations

of expressions with and, or, and nor in most categories (but not K “Kase
Marker” or NP).

(5) (both he and bill-nom laughed, S)

S
/\
KPn Pl
e I
both KPn CONJ KPn laughed
| PN

he and NP K
bill nom

We may read this tree as follows. Except for the particle hoth which gets
inserted by the coordination rule, the leaves of the tree are lexical items: Ae is
a lexical item of category KPn, i.e. {he,KPn) is in the lexicon of CME, and is a
lexical item of category CONJ, and so on. The second KPn in this sentence is
formed by a structure-building function (called Casemark) which combines bill

of category NP with nom of category K to form bill-nom of category KPn. The
Coordination rule (called BOOL) combines the three expressions (he KPn),
(and,CONJ) and {bill-nom,KPn) to yield both he and bill-nom gf category KPn.
Note that both is introduced as part of the value of the function and does not
itself have a category. Then the Predicate-Argument rule PA combines that KPn
with the P1 laughed to form the sentence both he and bill-nom laughed. More
formally now,

The vocabulary V for CME is:

john, bill, he, himself, him, laughed, cried, praised, criticized, both, and,
either, or, neither, nor.

The categories Cat for CME are: S, KPa, KPn, NP, K, P1, P2, CONI.

The expressions in the lexicon Lex can be listed by category:

K: nom, acc P1: cried, laughed
NP: john, bill P2: praised, criticized
KPn: he CONIJ: and, or, not

KPa: himself, him

The entries for K abbreviate (nom,K)eLex and (acc,K)eLex. The other lines'in
this listing are similarly interpreted. Elements of the 1ex1cor} are ordered pairs
consisting of a string and a category, as is every other expression generated from
exicon. ‘

the lCME has three structure-building functions: Casemark (CM),.P_redlcate—
Argument (PA), and Coordination (BOOL) given below. In defmmg_eas:h
function we first give its domain and then its value at each elexpent in its
domain. Where 6=(s,C) is an expression, we write string(c) fgr its string co_ordl—
nate, s, and Cat(c) for its category coordinate, C. We use ‘+’ for concatenation.

Casemark (CM):
Dom(CM)={((S,NP),(t,K))Is,tEV* }

t.KP if t=nom
owman {320 122

Predicate-Argument (PA):

Dom(PA)={{(c,T)l (Cat(c)=KPa & Cat(t)=P2) or
(Cat(c)=KPn & Cat(t)=P1)}

(string(G)+string(),S)  if Cat(c)=KPn

PA(c1)= { {string(t)+string(c),P1)  if Cat(c)=KPa



Coordination (BOOL):

Dom(BOOL)={{p,7,v)l Cat(p)=CONI & Cat(t)
=Cat(v)e(S,KPn,KPa,P1,P2}.

(bpth+strir}g(r)+and+string(v), Cat(t))  if p=(and,CONJ)
(c1ther+str1qg(r)+or+string(n), Cat(z))  if p=(or,CONJ)
(neither+string(t)+nor+string(v), Cat(t)) if p=(nor,CONJ)

BOOL(p,t,0)=

Given this simple grammar, it is easy to prove basic facts like the following;

Facts about CME

a. {(nom,K) and {acc,K) are both grammatical constants i i
icc, n CME. That is, fi
structure maps h for L{CME), h(nom,K)=(nom,K) and h(acc,K)=(acc,K)S. oral

b' (a d’ NJ) 1S not a grammatlca] constant C .
n CO ( > mn IVIE Ihere 1S a structure map

¢. For each category C the property of bein i i

: g an expression of category C
structural property in CME. That is, for each such C and each gexgresslisorz:
0€L(CME), if Cat(c)=C then for all expressions T isomorphic to o, Cat(t)=C.

O
3. Axioms relating form and meaning

We now present four axioms concerning the relation between form and
meaning in natural language which we hold to be universal:

Content Constraint (CC) Stron iti ]
' Const g Compositionalit
Semantic Fixity (SF) Model CIos:fre e

For reasons of space we onl i
For s of y study the Content Constraint an i
Fixity Constraint in this paper. d the Semantic

3.1. The Content Constraint

N 'The ConFent anstraint, ‘despite its name, is in fact purely syntactic, but it
as a sen:antnc motivation of the same sort we have for the “recoverability of
deletions” condition.* It is stated formally as follows:

Content Constraint

For F a generating function and 8,8'eDom(F
if 5=5' & 58 then F(8)#F(5). ®

CC says that the structure-building functions of a grammar preserve the
property of being distinct but isomorphic. The intuition is that since syntactically
isomorphic expressions have meanings with similar compositional structure (see
section 3.3 below for further discussion), the distinction between isomorphic
expressions will typically signal some semantic distinction that should not be
obliterated by any syntactic process. Distinct isomorphic expressions may (and
usually do) have distinct denotations. For example in ordinary English, the
proper nouns Mary and Susan are grammatically isomorphic and semantically
comparable — both denote individuals in the universe of discourse, but they may
denote different individuals. Similarly, the verbs sing and dance are distinct and
arguably isomorphic, and they are semantically comparable in that both denote
human activities. But in any given situation the individuals who are singing may
not be those who are dancing. Now, taking sing and dance as distinct but
isomorphic, the CC guarantees that their infinitival nominalizations, fo sing and
to dance are distinct (which they are), and their gerundive nominalizations,
singing and dancing, are distinct (which they are). CC would be violated if
English had a nominalizing operation ING”* which derived a given form, say
blicking, both from sing and from dance. Such a rule would lose the potential
content distinction present in sing and dance.

From the assumption CC we can prove the following:?

(6) Syntactic Fixity
Grammatical constants are either lexical items or they are derived from an
appropriate number of grammatically constant lexical items.

(6) allows for example that neither...nor... be a grammatical constant in
ordinary English derived by negating the properly lexical constant either...or...
But (6) does severely constrain the acceptable derivations of grammatical
constants. It fails for example if ‘grammatical constant’ is replaced by ‘semantic
constant.” For example, a derived expression such as Either all swans are black
or else some aren’t is semantically constant (always interpreted as True) even
though it is derived from lexical items which include swan and black which are
not semantic constants, just ordinary content items. CC rules out building
syntactic constants in such ways.

3.2. Model theory

To explain the other general relations between form and meaning, it will be
helpful to be more explicit about the nature of semantic interpretation. A
minimal requirement on such a notion is that it be rich enough to characterize
the entailment relation between expressions. At the level of sentence we say that
a sentence S entails a sentence T iff T is interpreted as True in all the situations
(models) in which S is interpreted as True.b A “situation” (or model) can be
extensionally represented by a pair (E.b) where E is a non-empty universe of
(possibly abstract) objects about which we think of ourselves as speaking, and |
is a function which assigns to each lexical item a denotation defined in terms of
E and the fixed set {True, False} of truth values. And for each model M=(E,\L)



we define an interpretation of L(G) relative to M by zaying how complex
expressions are interpreted as a function of the interpreiations of theis
where the interpretation of the lexical parts is given by u. Writin
interpretation of L(G) relative to M we note that wh ;
category Sentence Jo M is an element of {True, .
sentences we say that o entails T iff for all modeis M, if [o]™=True then
[tIM=True.

For example, consider simple models M=(E,jL) for CME. Let ¢ map lexical
P1’s to subsets of E and lexical P2’s to binary relations over E (s of ExE).
And p maps the NPs to elements of E and expressions of caizgoiy KPn to
functions from the subsets of E into {True, False}. Finally, it maps expressions
of category KPa to functions from binary relations to sets (possible P1
denotations). In particular let it map (himself,KPa) to that function SELF from
binary relations to sets given by:

vor
SELF(R)={acEl aRa} :

Note that the sort of object an expression (in particular a lexical expression) can
denote is determined by its grammatical category: Pls denote subsets of E, P2s
subsets of ExE, Ss elements of {True, False}, NPs elements of E, KPn’s
functions from P(E), the set of subsets of E, into {True,False} and KPa’s maps
from P(ExE) into P(E). The denotations of (nom,K) and {acc,K} are given
explicitly below, writing [A — B] for the set of functions from A into B:

(7) a. p(nom,K) is that function NOM from E into [P(E) — {True,False}]
given by:
NOM(b)(P)=True iff beP

b. u(acc,K) is that function ACC from E into [P(EXE) — P(E)] given by:
ACC(b)(R)={acE!l aRb}

So, anticipating slightly, if in some model {(John,NP) is interpreted as the
object y and {criticize,P2) is interpreted as the binary relation CRITICIZE then
(John-acc,KPa) will be interpreted as that function ACC(y) which sends
CRITICIZE in particular to the set of objects x such that x stands in the
CRITICIZE relation to y. So {criticized John-acc,P1n) will be the set of objects
which stand in the CRITICIZE relation to John. (Bill-nom,KPn) will be
interpreted as a function true of that set just in case the object that (Bil/,NP)
denotes is in that set.

Finally we note that p will interpret (and,CONI), {(or,CONJ) and
(nor,CONIJ) as the appropriate boolean operations.” For example if ¢ and 7 are
expressions of category S then p(and,CONI)(o)(1)=True iff W(o)={(t)=True. If
o and 71 are of category Pn for n=1 or 2, then p{and,CONI)(G)(T)=}(c) M u(T),
etc.

To define an interpretation of CME relative to a model M=(E,1.) we define
the function [ M from CME to CME as follows:

feemed

Equipped with this basic notion of a mode! structure we can now meaningfuily
woze sur addidional axioms about form apd meaning.

3.3. Compositionality and modei closure

A standard notion of compositionality can be given as foiiows:

Ordinary Compositicnality (0C; _ o '
For all models (E,1t), all generating functions F, there is a function F
such that

v8eDom(F), W(F()=F'(1(8)- q

Intuitively, this says that for each way of building a syntactic structure, there is 2
corresponding way to build the semantic value of the compqu from the semantic
values of the parts. (Of coursae, i)f & is an n-tuple of expressions (8y,...,8,) then
is meant {(1(8),.. ., ». . ‘
> ug\a/)ells)ropose <augtrlc3ngerlvl i(dga here, according to which the semantic function
corresponding to any syntactic generating funqtlon doqs not vary from one
model to another. So, for example, if a certain combination Qf phrases is
interpreted as predication (perhaps formally' rfaa!ized as a certain pattern of
function application, as in (8c), above), then it is interpreted that way in every
model. More precisely:

Strong Compositionality (SC) _ .
For G a grammar, F a generating function, and (E,1t) and (E,p") models
of L(G), .

if & and &' are in the domain of F then

if (8)=n'(8") then P(F(8))='(F(8)). a

In these terms, we easily establish that SC implies (but is not implied .b).') oC. )

Notice that neither OC nor SC says anything directly about the fx.nilteness of
the set of generating functions F nor about the fip?te representz_lb}llty of the
corresponding semantic mechanisms. However, it t_here are fmnFel.y many
syntactic generating functions F, SC but not OC_ental‘ls that there is just one
finite set W[F] of corresponding interpretive functions for all models. 'Stlll, it is
not clear that SC inherits the computational motivation popularly asso.c1_ated with
compositionality. That is, we finite speakers must clearly have a finite repre-



sentati e . .
Ofn;atxon o.f thq languagg. a finite representation of Lex and F is our only means
ccounting for how finite creatures like us can understand novel ulterances~

But it is not clear that we “evaluate” p1 or anything like it.
A closely related idea is:

Model Closure (ISOM)

The class of models for a lan i i

‘ of m . guage L(G) is closed under isomorphi
Ifwisa bue‘ctlon.thh domain E, then if (E,p) is a model so is (rrlz(lils)ri( )
where nt() is defined by: n(u)(d)=r(u(d)). e

O

::gl\:afgzlge ‘sh?wrtl_ t? (t;lpclzgpotential interpretations of natural language like
instantiated in (9) where P is a P1, ‘c’ is an individ

ntiate . , ual
(proper noun) and ‘Pc’ is an expression of category Sentence.  constant

(9) W(Pc)=T iff either u(c)=j and p(c)EU(P) or ((c)# and p(c)E(P)).

A function like 1 above de, i j ing i

. . . pends on certain objects being in the unive
gzrilcgdceétam prgpertn;.:s.slf we allowed functions like p, the interpretar;gnm:)(:'

xpressions F(0) would be dependent on thin

( ) . gs other than t
mtetrg)re]tatlop o_f the expressions 0. Trading in one universe with j in Ii]t flcl)i
another ‘ackmg J may allow bijections 7 as in ISOM such that the map m(W) fail
to be an interpretation. PTH) fails
s é\l::aa\::fgle ;hscussig(? ode(g z}nd ISOM is beyond the scope of this paper, and
hese ha n considered before. The content constraint CC anti
fixity, discussed in the next section, have not been proposed bet‘oreand emantie

3.4. Semantic Fixity

We o . -
C()mcquéﬁzrl:lc\)vw to alhnal.general restriction on form and meaning, one whose
s cs we explore in somewhat more detai i icti
. etail. This restrict >0ne
semantic constants, expressions i : tin L situation in
. ¢ S, ssions 0 with the property that i >h situation i
e nstant ’ . y that in each situation in
ch we use the language there is only one way of interpreting o, Formz‘llly
3

Definition

Given a grammar G, an expression d i
, eL . oo
all models MoB 1) ME,:(E,p.'), 0 I&C‘}__?I élS]]fi“A ‘_femantzc constant iff for

In ()(hel' WOrdS v i I E
v ElVen a universe i i i
sar ' y all m()dels W]th universe E lnterpret d the

For example, a predi i =, i i i

in _denotation.pGiver? : dulrclia\ir]slg eEeg?c(z)lgje;, under st ourse is ixed
objects stands in the = relation iff x and y al
the mthematical quantifier exists is fixed i
that exist are exactly the elements of E. In
and every, have their denotations fixed on
purely an arbitrary convention. These ex

ts under discussion, a pair (x,y) of
re the same object. In the same way,
n denotation given E since the objects
general, “logical” words, like not, or
ce tl}e universe is given. This is not
pressions are distinctive in that their

denotations have distinctive properties. Their denotations are logical constants
in the sense that they satisfy a very strong condition, known as permutation (or
automorphism) invariance (PI). Roughly this says that their denotations remain
unchanged if we trade in some individuals for others. That is, their denotations
do not depend on which individuals have which properties or stand in which
relations to others. For example, given a small universe E, let us list all the pairs
(x,x) that stand in the = relation. Now consider a “substitution” (=permutation)
of E, that is, a bijection 7 from E to E. If we go through our list and replace each
pair (x,x) with the pair {n(x),m(x)) we find that the members of the new list are
exactly the members of the old list (though their relative order in the written list
may have changed). In this sense, then, interchanging objects systematically
does not change the pairs that lie in the = relation. Nor will it change the objects
with the existence property. In contrast, the denotation of a predicate like sing
will vary according to who is singing. Then where b is singing and a is not, a
permutation © which interchanged a and b (leaving everything else fixed) would
change SING. Replacing the elements X in SING with m(x), the resulting list is
different: T(SING)=SING.

These rather technical observations lead to a linguistic observation of
modest interest. Namely, the range of semantically constant expressions in a
given category is limited by the number of permutation invariant objects in the
denotation set associated with that category. Whenever the universe E has at
least two elements the number of PI elements of E is zero. Thus there can be no
logical constants among the proper nouns and (recalling our introduction) any
«yniversals” blocking this are not arbitrary at all. Moreover there are only two PI
subsets of E, namely E and @, and so there are just two extensionally distinct
one-place predicates (P1s) which are semantically constant. We can represent
them by exist and not exist. Similarly there are at most four distinct .PI binary
relations over E, of which = and # receive natural expression, though the empty
binary relation is expressible with phrases such as is taller than but not as tall as
and the set of all pairs is denotable by expressions like either is taller than or
else isn’t taller than, etc.®

We propose that this kind of fit between syntax and semantics holds in
human languages as well. In particular, we propose:

Semantic Fixity (SF)
Grammatical constants are semantic constants.
a

Turning to CME, with models as defined in section 3.2, the coordinators
{and,CONI), (or,CONJ) and {nor,CONJ) are semantic constants. We observed
in section 2 that these are not grammatical constants in CME, though it is
plausible that in a more English-like grammar they would be. The lexical item
(himself KPa) is similar: it is a semantic constant, but not a grammatical constant
in CME because no process in CME distinguishes himself from him. In the
grammar of English, these two elements would be distinguished. By contrast,
given an arbitrary universe of individuals, any of them could, in principle, be
denoted by proper nouns like Dana, Robin or Pat. So proper nouns are not



semantically constant. Their denotations can vary relative to a fixed universe.
Similarly one place predicates like sleep and laugh are not semantically
constant. Given a universe including a, b, and ¢ it might be that just b is
laughing, or both b and ¢, or none of them, etc. Finally, it is important to note
that expressions like (both John and neither John nor Bill, KPn) are semantic
constants. These are not grammatical constants, but SF does not suggest in any
way that all semantic constants are grammatical constants. SF makes the
converse claim, that grammatical constants are semantic constants.

Current work suggests that SF will be derived from a more general principle
concerning the semantic fixity of the generating functions. But even taking SF as
axiomatic, we still find two consequences of interest. First, SF severely
constrains the form of a grammar for a given language. It might seem trivial, for
example, to assume we could add to a grammar of English a function ¢ that
would do nothing more than derive the NP John from John. But if the domain of
¢ has just one element then provably that element is a grammatical constant
(since structure maps must preserve the domains of the generating functions), so
by SF it must be a semantic constant. But in fact the NP John is not semantically
constant. Hence ¢, and functions like it, are not acceptable in a grammar of
English, or a grammar of natural languages in general.

A second interesting consequence of SF comes from the fact that causative
and applicative (Benefactive, Locative, Instrumental) affixes on verbs are
(arguably) grammatical constants. By SF they must be semantic constants. But
they are not logical constants, like not, and, =, etc. Whether John brought about
a certain action, or whether an act was done for his benefit, are simply
contingent facts about the world. They may be true in certain situations with a
given universe and false in others with the same universe. We are thus led on
linguistic grounds to posit a much richer model structure for natural languages
than those used in standard logical study, one in which notions like AGENT,
BENEFACTEE, INSTRUMENT, etc. are primitives and must be preserved by
any structure-preserving semantic operations.

We observed that logical constants, those elements with PI denotations, are
not arbitrarily distributed among categories. But properly linguistic constants
seem less constrained, though their distribution is less well understood. One case
where a linguistically expressed contrast arises concerns valency affecting
operations in natural language. Thus affixes which combine with two place
predicates P2s to form P1s are often logical constants, or basically so allowing
minor modification. Examples are Passive and Reflexive illustrated below.

(10) (ChiGewa; Baker 1988) -
a. Mikango yanu i-na-thamangits-a mbuzi zathu active
lions your they-pst-chase-asp goats our
*Your lions chased our goats.’

b. Mbuzi zathu ‘zi-na-thamangits-idw-a (ndi mikango yanu) passive
goats our they-pst-chase-pass-asp by lions your
‘Our goats were chased (by your lions).’

In (10b) the passive affix -i('lw-
to form a VP, thamangits-idw- :
valency (=number of arguments require

has combined with the TVP thamangits ‘chase’

‘be chased.” So -idw- has reduced by one the
d) of the original predicate. And forP a
should be predictable from that of P,

iti i i P+idw- 1at O
transitive verb the interpretation of e endoncy is given

by Compositionality. To within a first approximation,
by:

; M
(11) ForPaTVPandMa model, |IP+tdw-]]M={b|Ela {(a,b)elPTM)

m Kinyarwanda (Kimenyi 1980) is intransi-

. . h |
TS e B ssitie P dicate in (12a) by prefixing the verb root

tive, derived from the transitive pre
with ii.
(12) a. Umukobbwa a-ra-reeb-a umuhuiingu
girl she-past-watch-asp ~ boy
“The girl is watching the boy.’

b. Umukobbwa &-r-fi-reeb-a
girl she-past-self-watch-aspect

“The girl is watching herself.’

Reflexivization as a way of deriving a P1

i i n think of ; :
A S B tand more gene from a Pn+1). A first pass at its semantic

from a P2 (and more generally a Pn
interpretation is:

(13) ForPaTVPandMa model, [ii + P]]M={al(a,a)e|1P]]M}.

The functions which interpret -idw and ii- are provably PL. By contrast

functions which increase the arity of predicates are never basically PI. The most

. A ate a
typical cases we arc aware of, such as causatives and appl!catxves, associate

i i i fic semantic role —
i ment of the derived predxcate_thh a spect : .
(.ixe(s}‘}gl’r\‘l?It‘e%IngggFACTEE, etc. We illustrate an instrumental from Kinyarwanda:

(14) a Umwéana a-ri-ry-a

child he-pres-eat-asp
“The child is eating.’

b. Umwéana a-ra-ri-lish-a ikdnya
child he-pres-eat-inst-asp  fork

“The child is eating-with the fork.’

i jish ‘i ’ i itive verb in (14a) yields a
ffixation of -iish ‘instrumental’ to tpe intransi '
ggrrl‘:ifili/el\)/(:rb in (14b). But of course the binary relatx'on. denoted by .tfhe lz;:'tle; :Z
not unrelated to the set denoted by the former. It satisfies (15), so if a chu

eating with a fork, he is eating:

s M
(15) For M a model and P a VP, if (a,b)e[ P+iish]M then ae[ PT™.



More generally the interpretation of such valency-increasing operators is
given by (16), where p is an n-place predicate and 8 is a “theta role,” that is, a
relation between individuals and predicate denotations:

(16) Fgi(R)a))...(ap41)=T => 3; 6 R

Roughly, we add argument position i with theta role §, so that a,...a,, | is
mapped to True only if a; does, in fact, bear § to the relation R.

The sorts of relations expressed by causative and applicative operators are
not PI in the classical sense. But linguistically the sense of AGENT, etc. is not
felt to vary with contingent matters of fact in the same way that, e.g., who is
criticizing whom varies from situation to situation. We may represent this by
taking such relations as part of the model structure for natural language. Thus
alongside truth values and a set of entities (and probably regions, temporal
intervals, possibly events) we shall put relations like AGENT, etc. among the
primitives of a model and just consider permutations of E which fix these
relations. That is, which are such that (b,R)eAGENT iff {x(b),m(R))€AGENT.
(Which is just to say n{AGENT)=AGENT). Expressions whose denotations are
fixed (mapped to themselves) by all permutations of the universe that fix the
primitive theta roles can be called semantic constants, in analogy with the
logical constants whose denotations are fixed by all permutations, It is with this
understanding of semantic constant that we interpret Semantic Fixity.

3.5. A remark on Emonds 1985 on grammatical constants

Emonds (1985:168,fn.11) seems to identify something similar to our
grammatical constants when he refers to “closed class items” and “designated
elements.” He suggests at one point that these elements are “lacking any purely
semantic feature.” Now we have a cogent way to formulate and understand this
sort of claim. The point is not that these elements are lacking in semantic
properties. Logical constants like seventy-seven and eighty-seven are not
grammatically distinct, but they are clearly semantically distinct. But this is not a
problem for SF, since the implication relation goes only in the other direction:
grammatical constancy implies semantic constancy. In this sense, the gram-
matical constants have the special property in the language, not the semantic
constants. Number names are simply among the infinitely many expressions that
always denote PI elements of their denotation set but which are not grammatical
constants. Thus we do not claim that semantic constants must be syntactic ones
in natural languages, and we do not find this idea a reasonable constraint on
natural languages. It would force all semantically unique behavior to be coded in
the syntax,

More should ultimately be said about semantic fixity. What, exactly, is the
motivation for this constraint? We must leave this question open here. If we had
a convincing answer we would not need to take SF as an axiom; we would
derive it from more primitive assumptions. And as we indicated earlier, we think
that in a correctly formulated system of form-meaning constraints SF will indeed
be a theorem, not an axiom. But still, why is it reasonable to expect it to hold

(regardless of whether it is primitive or derivefl)? Our feeli_ng t‘lg:[eellasté:z&iltﬁ
1 f a grammatical constant in an expression ¢
e teation of som i i ion. So the constant tells us
icati : nerating function. 50
the application of some particular genel : nstant tells 4
i i i were derived. We can in fact alway
how the derived expressions it OCCUrs 10 . Yo can In Tac o o
i tant is not in the Lexicon but 1s 1n :
modify the grammar so that the cons  Lexicon but e T o
function. And by Compositionality the interp i
as part of the value of the . y nlerpretation
i i determined once we know
of the derived expression should be . N he funceon
i i i ts were interpreted. But this wou ;
which applied and how its argumen . ‘ not be the
i i 1d have many different interpre .
case if the grammatical constant cou dif s
i i iven way of building a complex expres!
would be equivalent to saying that a given X e o
f interpreting the complex express
corresponded to many ways 0 : PO o e
# i ffect what we are saying 18
avs of interpreting the arguments. In e A . . the
:)vf érammaticpal constants is purely grammatical; their semantic contribution,
ich may be very non-trivial, is constant. _ o
v The v);ew we);re led to is opposed to both the extreme ‘conventtll_onalijsetrvgl\;\;
i i i i d in the introduction to this paper.
and the arbitrary universals view dxscuss? : AL
it is ati i ite strong “‘autonomy of syntax™ vViews,
it is compatible with even quite strong autc Ve
i i ‘ tive”in the sense of being tunda y
ones that require semantics to be ‘derl.va | :
interpretivc?taking syntactic expressions as input. Indeed the semantic analysis
we use here is precisely one of that sort.

Notes

1. To be precise, we define a grammar as a 4-tup1e., G=(VG,Catg,LexG,FG),)wl:i:::

Vg is ihe vocabulary, Catg is the set of categories, Lexg 18 afsezt of (strnngi,c:(t)eg(;r)é aipr ! (c;
i iz i hat map n-tuples of (string,cate : .
and Fg is a set of partial functions that 1 calegOry ) P
i losure of Lexg under the tun
i tegory) pairs. The language L(G) is the ¢ r

S;rl‘{%f?eeax%e ?ffpthe subscripts when the context makes clear which grammar we are
talking about.

i i ion h: L(G) — L(G), we define
artial function FeFg and any total function |
the fuzr;gioc:nal?zFI)) as the function with domain h[Dom(.F)] which for any gf? I?om(lll‘)Frggps
h(o) to h(F(0)). Then, a bjiection h: L(G) — L(G) is a structure map 1 t(”)r a Lhe g,
h(F)=F. In this case, of course, h “preserves” any generating tuncl ,
Dom(F)-=h[Dom(F)], and commutes with it, h(F(c))=F(h(0)).

3. This notion of being structural is reminiscent of Chomsky’s (1973:233) informal
idea that human linguistic processes are structure-dependent.

4. Chomsky 1965, Emonds 1985, etc.

5. Syntactic fixity can be stated more precisely as follows:

If ¢ is a grammatical constant then either ge€Lex or for some FeFg and some
seDom(F)NL(G)", 0=F(8) and each 3; is a grammatical constant.

We prove that CC entails syntactic fixity as folljo(g)s.f Suppose ;2?1:: Snﬁ\ é?ﬁnc'r:g:’ Ffr::c;
i i ived; is, o= or some
the definition of L(G), o is derived; that is, o=F( ¢ B s
 is grammatically constant. Suppose,
some sequence 8. We show that : AL o VY
iction, that & is not constant. Then there is a struc p
(I:\JOon»:/r tﬁl\fn;ﬁ; 5=h(3), since h is the desired structure map. But now the antecedent of CC



is satisfied: 3=h(8) and 82h(3). So we inf:
. 1(0) . infer th
F(8) is o, so this just says that o=h(c), y

at F(h(8))=h(F(8)). Thus F(8)#h(F(5)). But
Thus 8 must be constant after all.

contradicting that ¢ is a grammatical constant

6~ SCC, tO[ exa”lplev l:ﬂcllall a“d f altz 1985 for a ge“elalllauon of Ule Cll[all"lc“l
. h
Xelallon to the dello[a[lo“b of O[hel sorts of CXPICSSIOHS

7. In general the sets DengC i i
. . gC in which expression i
M with universe E have a boolean structure. SeF::, eg., Izec::fngilzﬁgrgalctzdfggge  model

8. See chnan 1995 for an extensiv dlSCUSSlO“ of pe““u[a[loll mvar
1ve
ariance dnd

9. See Keenan and Stabler 1995 for further discussion.
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